A spectral radius problem connected with weak compactness
نویسندگان
چکیده
منابع مشابه
On spectral radius of strongly connected digraphs
It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
متن کاملon spectral radius of strongly connected digraphs
it is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. in this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
متن کاملSpectral radius and signless Laplacian spectral radius of strongly connected digraphs
Article history: Received 15 April 2014 Accepted 5 May 2014 Available online 29 May 2014 Submitted by R. Brualdi MSC: 05C20 05C50 15A18
متن کاملA Weak Grothendieck Compactness Principle
The Grothendieck compactness principle states that every norm compact subset of a Banach space is contained in the closed convex hull of a norm null sequence. In this article, an analogue of the Grothendieck compactness principle is considered when the norm topology of a Banach space is replaced by its weak topology. It is shown that every weakly compact subset of a Banach space is contained in...
متن کاملSpectral Radius and Traceability of Connected Claw-Free Graphs
Let G be a connected claw-free graph on n vertices and G be its complement. Let μ(G) be the spectral radius of G. Denote by Nn−3,3 the graph consisting of Kn−3 and three disjoint pendent edges. In this note we prove that: (1) If μ(G) ≥ n − 4, then G is traceable unless G = Nn−3,3. (2) If μ(G) ≤ μ(Nn−3,3) and n ≥ 24, then G is traceable unless G = Nn−3,3. Our works are counterparts on claw-free ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1993
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089500009599